Understanding Sleep: An In-Depth Review

- Sleep is required for the coordination of hormonal, metabolic, and immunological processes
- During REM sleep, our brain maintains the nervous system and builds memories
- During NREM sleep, our body restores energy depots and strengthens the connections between neurons
“You’ll feel better after a good night’s sleep.” Whether uttered as caring suggestion from a loved one, or by the bartender trying to end an awkward conversation, chances are that, whatever you’re dealing with, you will feel better after a long sleep. This is because sleeping not only allows our bodies to enter a different phase of consciousness, it also enables different phases of immunological signaling, hormonal coordination, metabolic balancing, cognitive assimilation, and emotional processing. These sleep-coordinated changes make us more resilient physically and mentally, allowing us to heal faster, make better decisions, and feel better.
So, what is happening while we sleep that makes it so important? In this article, we look at the two sleep states we experience throughout the night—each with very different functions that are critical to our health. But first, what is sleep anyway?
What is sleep?
Scientists are great at defining innocuous things in accurate yet creepy ways, like sleep: “A state of immobility with reduced responsiveness, distinguished from coma or anesthesia by its rapid reversibility.”1 That definition alone may cause insomnia. Besides rapidly reversible unconsciousness, another key feature of sleep is that the body tries (albeit, not always successfully) to recover any sleep lost during a period of sleep deprivation. The phenomenon of “rebound sleep” suggests that sleep isn’t a passive time of low activity or alertness, but rather a biological account that demands restitution upon going into debt.1
When you feel drowsy, this is due to the gradual accumulation of various sleep factors that activate ‘sleep’ neurons and inhibit ‘wake’ neurons in the brain.2 Essentially, once these sleep factors reach a certain level, you feel the need to fall asleep. Sleep factors are timed to accumulate at night by our circadian master clock (also in the brain), which senses light from the eye and transmits that information to the rest of the body.
We sleep to conserve energy and perform restorative activities
The vital function of sleep is most evident in studies of sleep deprivation. For example, in experiments with rodents and flies, sleep deprivation causes death more quickly than starvation!2 In humans, sleep deprivation is associated with significant cognitive and emotional challenges, while poor sleep and day-sleeping (as with night shift work) is associated with metabolic and immune disturbances.2,3
We know that one of the major functions of sleep is to conserve energy, especially in our metabolically demanding brain. While the brain is only about 2% of our body weight (depending on your body weight, right?), it consumes 20% of the body’s total energy.2 When we’re sleeping, the brain decreases its energy requirement by 44% and its oxygen requirement by 25%.2 Even so, the brain isn’t dormant during sleep; in fact, virtually all areas of the sleeping brain are active at various times.1
As described next, our sleeping brain performs necessary restorative activities as it shifts between two sleep states, REM and NREM sleep. You may already know something about these states, such as that REM is when you dream and your eyes move back-and-forth, and NREM is “deep sleep”. But what you may not know is that these sleep states execute critical activities that help develop and maintain the nervous system.1